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MOTION OF A ROD IN A VISCOUS FLOW

UDC 531.391.1:532.5.011V. M. Shapovalov and S. V. Lapshina

The equations of the dynamics of a finite-length curved rod in a viscous flow are derived. The
longitudinal stability of the rod against small deflections from a rectilinear form is studied for two
types of flow (pure and simple shear). The minimum flexural rigidity of the rod that ensures rod
stability for any orientation in the flow is found. The effective viscosity of a suspension filled with
rectilinear discrete fibers is estimated.
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Shapovalov [1] showed that for a certain orientation of a filament in a viscous flow, the stretching force is
zero. By the definition, a flexible filament transmits only tensile forces; therefore, the domain of applicability of
the equations of [1] is limited by positive stresses in the filament. We can overcome this limitation by taking into
account the flexural elasticity of the fiber, i.e., treating it as a rod.

Results of solution of the problem considered can be used to analyze flows of magnetorheological fluids
with ellipsoidal particles and mixing of fiber-filled polymers. Flows of fiber-filled compositions have the following
important features: increased flow pressure, variations in fiber distribution (orientation), and fiber breakage. Even
if its matrix is a Newtonian fluid, a fiber-filled composition always exhibits non-Newtonian properties.

1. Equations of Dynamics. The following assumptions have been adopted for the problem considered.
The inertial and gravitational forces are negligible. The rod is isolated both mechanically and hydrodynamically,
i.e. it does not contact with other rods. The aeroelasticity effect is ignored and the rod does not introduce significant
hydrodynamic perturbations into the fluid velocity fields. The flow is laminar and isothermal. Because the rod has
a circular cross section, torsion does not occur upon flexure. The rod axis (elastic line) remains a flat curve, and
the condition max (d/l, kd)� 1 is satisfied (rod diameter d, rod length 2l, and rod curvature k). The elastic strains
caused by stretching or compression of the rod are ignored. The rod cross section is small compared with its length
and remains unchanged under deformation, i.e., there is no pressure of longitudinal fibers. The rod cross sections
(normal sections) remain plane under deformation (Bernoulli’s hypothesis). Shears are ignored, transverse forces
are determined from the equilibrium conditions, and strain equations are derived only for bending moments. The
friction force acting on the rod is proportional to the relative flow rate.

Let us introduce a coordinate system (x, y, z) that is immovable in space or “frozen” in a fluid. The
coordinates of the points on the elastic rod line s are denoted by x and y. The position of the curve s is described
by the vector-function r(s, t), −l 6 s 6 l, where t is time. The x, y, and z directions form a right-hand oriented
trihedron (i, j,k) (see Fig. 1). Let l (l = rs, |l| = 1) denote a tangent vector to the elastic line, n = b × l be a
normal vector, and b be a unit vector parallel to the z axis.

According to [2], the equilibrium equations for the rod have the form

Fs = −K, Ms = F × l, (1.1)

where K = Al((V −rt)l)+Bn((V −rt)n) is the linear density of external forces [1], A = 2.1πµ
√
c/ ln (0.952/

√
c) is

a coefficient that characterizes the longitudinal component of the friction force, µ is the fluid viscosity, c is the
volumetric concentration of the fiber filler in the fluid, B = 4πµ/ln (7.4/Re) is a coefficient that describes the
transverse component of the friction force, Re = 〈v〉ρd/µ is the Reynolds number, ρ is the fluid density, and 〈v〉 is
the characteristic velocity; the subscripts denote corresponding derivatives.
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Fig. 1

With allowance for the relations F = (F l)l + (Fn)n = N l + Qn, M = Mb, ls = kn, ns = −kl, bs = 0,
l× l = 0, and n× l = −b, Eqs. (1.1) become

(Ns −Qϕs)l+ (Nϕs +Qs)n = −Al((V − rt)l)−Bn((V − rt)n), Ms = −Q, (1.2)

where k = ϕs is the curvature of the rod, ϕ is the slope of the tangent line, N is the longitudinal force, Q is
the shearing force, and M is the bending moment; V − rt = (vx − xt)i + (vy − yt)j, l = i cosϕ + j sinϕ, and
n = −i sinϕ+ j cosϕ. Torsion is absent.

To close the problem, we use the condition of proportionality of the rod curvature to the internal-force
moment [2]

M = EJ(ϕs − ϕ0,s), (1.3)

where E is the elastic modulus, J = πd4/64 is the moment of inertia of the cross section, the value of ϕ0,s corresponds
to the time t = 0, and ϕ0(s) is a function that describes the initial (natural) configuration of the rod and satisfies
the conditions ϕ0,s = ϕ0,ss = 0 for s = ±l.

The functions x, y, and ϕ are linked by the geometrical relations xs = cosϕ and ys = sinϕ.
At the initial time, stresses are absent in the rod and forces and moments are absent at the free ends of the

rod; therefore, the initial and boundary conditions of the problem are written as

t = 0, r = r0: M = F = 0; t > 0, s = ±l: F = M = 0, (1.4)

where r0 = x0(s)i+ y0(s)j is the radius-vector at the initial time.
Solving the first equation in (1.2) for V − rt and differentiating both sides of the resulting relation with

respect to s, we have the more convenient equation

Vs − rts = −B−1[(Nsϕs +Nϕss +Qss)n+ (Nϕs +Qs)ns]−A−1[(Nss −Qsϕs −Qϕss)l+ (Ns −Qϕs)ls], (1.5)

where Vs = (l∇)V = (((l∇)V )n)n+ (((l∇)V )l)l, ((l∇)V )n = sin 2ϕ∂vy/∂y− sin2 ϕ∂vx/∂y+ cos2 ϕ∂vy/∂x, and
((l∇)V )l = 0.5 sin 2ϕ(∂vx/∂y + ∂vy/∂x) + cos 2ϕ∂vx/∂x. Here the relations ns = −ϕsl, ls = ϕsn, rts = ϕtn,
b× b = n× n = 0, l× b = −n, l = n× b, rs = l, and ∇ = (∂/∂x)i+ (∂/∂y)j are taken into account.

According to (1.5), variations in the rod orientation or shape are due to the velocity gradient because
the constant velocity component (vx = const, vy = const) causes a convective displacement of the rod along
the corresponding coordinate axis without changing its configuration. Consequently, in studies of conformation
transformations, one can place the origin of the Cartesian coordinate system at any point of the rod, for example,
in the middle of the elastic axis (x = 0, y = 0, s = 0).

Thus, for the four unknown functions Q, N , M , and ϕ, we have the following equations: (1.3), (1.5), and
the second equation in (1.2).
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2. Stability Analysis. For the plane (vz = 0) viscosimetric flows considered, the velocity components are
written as follows: for pure shear, vx = g|γ|x, vy = −g|γ|y, and g = sign γ, and for simple shear, vx = g|γ−|y,
vy = 0, and g = sign γ− (γ = ∂vx/∂x and γ− = ∂vx/∂y are the strain rates). To simplify the relations, we introduce
a parameter g1 that characterizes the flow type (g1 = 1 for pure shear and g1 = 0 for simple shear).

Let us introduce the following dimensionless variables and parameters: τ = t|γg1 + (1− g1)γ−|, S = sl−1,
e = A/B, and K = EJ/[Bl4|γg1 + (1− g1)γ−|]. The quantity Al2|γg1 + (1 − g1)γ−| is taken as the scale of the
axial force N .

Excluding the functions M and Q from the second equation in (1.2) and Eqs. (1.3)–(1.5), we obtain the
problem of the evolution of a curved rod in dimensionless form:

ϕτ − (e+ 1)Nsϕs − eNϕss +Kϕssss − e−1Kϕssϕ
2
s = −g[g1 sin 2ϕ+ (1− g1) sin2 ϕ],

eNϕ2
s −Nss −K(1 + e−1)ϕsϕsss −Ke−1ϕ2

ss = g[g1 cos 2ϕ+ 0.5(1− g1) sin 2ϕ], (2.1)

τ = 0, ϕ = ϕ0(S): ϕs = ϕss = N = 0; τ > 0, S = ±1: N = ϕs = ϕss = 0.

For a rectilinear rod (dϕ0/dS = dϕ/dS = 0), an analytical solution of problem (2.1) is similar to that for a rectilinear
filament [1]:

N− = 0.5gg1(1− S2) cos 2ϕ− + 0.25g(1− g1)(1− S2) sin 2ϕ−,

ϕ− = g1 arctan [tan ϕ0 exp (−2gτ)] + (1− g1) arctan [tan ϕ0/(1 + gτ tan ϕ0)], (2.2)

ϕ−,τ = −g1g sin 2ϕ− − (1− g1)g sin2 ϕ−.

Here and below, the subscript minus denotes the variables corresponding to a rectilinear rod.
The distributed load produced by viscous friction forces can generate both stretching and compressing forces

in the flows in the rod, depending on the rod orientation [1]. Setting a small initial bending, we study the stability
of the rod. Let us establish rod orientations for which perturbations will grow unboundedly or decay. We assume
that the perturbations increase so rapidly that the evolution (turn along the stream) can be considered “frozen,”
i.e., the angle ϕ− in the equations is treated as a parameter.

We introduce small perturbations of the rod shape α and the axial force β:

ϕ = ϕ− + α(S, τ), N = N− + β(S, τ), max (α, β)� 1.

Linearization of Eqs. (2.1) yields the following equations for deflections:

ατ + (e+ 1)SDαs − 0.5e(1− S2)Dαss +Kαssss = −2Dα,

−βss = g[−2g1 sin 2ϕ− + (1− g1) cos 2ϕ−]α,

τ = 0, α = α0(S): αs = αss = β = 0; τ > 0, S = ±1: αs = αss = β = 0,

where D = g[g1 cos 2ϕ− + 0.5(1− g1) sin 2ϕ−].
The stability analysis reduces to an analysis of the first equation. We specify perturbations in the form

α = A exp (λτ), where A(S) is an eigenfunction and λ is an eigenvalue. For the eigenfunction, we write the
homogeneous problem

λA+ (e+ 1)SDAs − 0.5e(1− S2)DAss +KAssss + 2DA = 0,

S = ±1, As = Ass = 0.

An analysis of the solution for a complex plane shows that Imλ = 0, i.e., perturbations are absent. The
eigenvalue problem was solved by Galerkin’s method. As coordinate functions (approximations of the first two
harmonics), we used the polynomials 15S − 10S3 + 3S5 and 3S2 − 3S4 + S6 satisfying the boundary conditions.
For the first two eigenvalues, we obtained the relations

λ1 = −(0.572e+ 1.19)g[2g1 cos 2ϕ− + (1− g1) sin 2ϕ−]− 34K,
(2.3)

λ2 = −(5.345e+ 1.336)g[2g1 cos 2ϕ− + (1− g1) sin 2ϕ−]− 146.77K.
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For the position of the neutral equilibrium (for simple shear, ϕ− = 0 and for pure shear, ϕ− = π/4), the ratio of
the eigenvalues λ2/λ1 = 4.314 obeys Eulerian stability theory, according to which, λ2/λ1 = 4 [3].

The first term in the relation for λ1 in (2.3) characterizes the stability boundaries for a flexible filament (rod
of zero rigidity, for which K = 0) [1]. The second term characterizes the effect of the bending rigidity of the rod on
the stability boundaries. Accounting for the bending rigidity extends the stability region.

We note that there exists a critical rigidity of the rod K∗ for which a rod of rigidity K > K∗ remains stable
for any orientation. For pure shear (g1 = 1) and with allowance for the equality max (−g cos 2ϕ−) = 1, the critical
rigidity is K∗ = 0.0336e+ 0.07. For simple shear (g1 = 0) and with allowance for max (−g sin 2ϕ−) = 1, the critical
rigidity is half that for pure shear: K∗ = 0.0168e+ 0.035. Indeed, according to (2.2), the axial force for pure shear
is twice that for simple shear.

Processing of fiber-filled polymers is characterized by intense dispersion of fibers and by the existence of a
fracture limit for the filler can be reached. It can be assumed that fracture of high-module fibers (glass or carbon)
proceeds by a mechanism of stability loss. For typical conditions of extrusion of glass-fiber polymers, the parameter
values are as follows: d = 10 µm, c = 0.05, µ = 103 Pa · sec, Re = 1.2 · 10−7, e = 1.56, E = 7.5 GPa, and
γ = 100 sec−1. In this case, the critical rigidity for pure shear K∗ = 0.122 corresponds to a fiber length 2l =
0.3 mm, which is in agreement with the study of [4–6], in which the fiber length after intense mechanical action
was 0.1– 0.9 mm. Under these conditions, the calculated [using formula (2.2) for g = 1, S = 0, and ϕ− = 0] tensile
stresses in the middle part of the fiber are 4N−/(πd2) = 59 MPa, which is much smaller than fracture stresses under
tension (3.5 GPa).

3. Viscosity of a Fiber-Filled Fluid. A fluid filled with suspended numerous fibers can be considered
a homogeneous medium. The effective viscosity of this medium µ+ differs from the viscosity of the main fluid
(matrix) µ. We consider the case of small concentrations of suspended fibers, where the total amount of fibers is
small compared with the fluid volume. In this case, is no contact and hydrodynamic effect among the fibers. The
elastic axes of all fibers lie in the planes perpendicular to the z axis.

We determine the energy expenditures of the fluid flow due to the presence of a single fiber in the mixture
(curved rod). The velocity of an individual point on the rod elastic axis is rt, and, hence, the relative fluid velocity
is V − rt; K is the local vector of the external force density. A force K ds acts on a rod of length ds. For a rod of
length 2l, the viscous friction energy W is given by the integral

W =

l∫
−l

(V − rt)K ds.

With allowance for the first equation in (1.1) and the relations V − rt = −B−1(Nϕs + Qs)n − A−1(Ns − Qϕs)l
and F = N l+Qn, scalar multiplication yields the equation

W =

l∫
−l

[B−1(Nϕs +Qs)2 +A−1(Ns −Qϕs)2] ds.

For a rectilinear rigid rod (K > K∗, ϕs = 0, and Q = 0), we have

W = A−1

l∫
−l

N2
−,s ds.

The total number of fibers in the mixture is 2V c/(πd2l) (V is the mixture volume); hence, the total energy
expenditure WΣ due to the flow around all fibers is given by the relation

WΣ = 2WV c/(πd2l). (3.1)

Taking into account Eq. (2.2), we obtain the following relation for simple shear (g1 = 0):
W = (1/6)Aγ2

−l
3 sin2 2ϕ−. (3.2)

Taking into account the additional energy expenditure due to the flow around the dispersed phase, the relation for
the effective viscosity in simple shear is written as

µ+ = (τxyγ−V +WΣ)/(γ2
−V ), (3.3)

where τxy = µγ− is the tangential stress.
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For a mixture filled with rectilinear fibers of identical length, diameter, and orientation, it follows from (3.1)–
(3.3) that

µ+ = µ
(

1 +
2.1
3

l2c
√
c

d2 ln (0.952/
√
c)

sin2 2ϕ−
)
.

The above relation implies that for ϕ− = 0, the viscosity of the system is minimal, and for ϕ− = ±π/4, it is
maximal. The fiber changes its orientation ϕ− with time (synchronous rotation) in accordance with Eq. (2.2), and,
hence, the effective viscosity also varies.

For polydisperse fibers whose fractions are all distributed uniformly over the volume of the medium, the
viscosity is given by the relation

µ+ = µ
(

1 +
2.1c
√
c

3 ln (0.952/
√
c)

m∑
i=1

l2i
d2
i

ψi sin2 2ϕi
)
, (3.4)

where ϕi = arctan [tan ϕ0i/(1 + gτ tan ϕ0i)], di, 2li, and ϕ0i are the diameter, length, and initial orientation of
fibers of the ith fraction, respectively, m is the number of fractions, and ψi is the relative number of fibers of the

ith fraction
( m∑
i=1

ψi = 1
)

.

Because the neutral equilibrium position is unstable in simple shear, the fibers rotate with a nonuniform
velocity [1]. Such instability may be caused by the fiber curvature, hydrodynamic perturbations generated by
adjacent fibers, etc. If all fibers have the same orientation at the initial time, the effective viscosity approaches the
constant value corresponding to the isotropic (chaotic) orientation under the law of damping oscillations. The region
of neutral equilibrium can be extended if tensile strain is imposed on the main flow, which occurs, for example, on
rollers.

We find the effective viscosity of the system for the isotropic (chaotic) orientation of fibers. According to
Eq. (3.2), fibers with the orientations +ϕ− and −ϕ− correspond to the same value of W by virtue of the evenness
of the function; therefore, we confine ourselves to the sector 0 < ϕ− < π/2. In the vicinity of the orientation ϕi,
we distinguish a sector with the angle ∆ϕ = π/(2m) and treat l and d as functions of the angle l(ϕi) and d(ϕi).
Taking into account the isotropy of ψ = 2∆ϕ/π, we can write the equality

lim
∆ϕ→0,
m→∞

m∑
i=1

l2(ϕi)
d2(ϕi)

2∆ϕ
π

sin2 2ϕi =
2
π

π/2∫
0

l2(ϕ)
d2(ϕ)

sin2 2ϕdϕ.

For a one-fraction filler (l = const, d = const), the last integral is 0.5l2/d2, and relation (3.4) becomes

µ+ = µ
(

1 +
2.1
6

l2

d2

c
√
c

ln (0.952/
√
c)

)
.

Under pure shear (g1 = 1), the total energy expenditure due to the flow around all fibers is found by
formula (3.1) with allowance for (2.2):

WΣ = [4V cl2/(3πd2)]Aγ2 cos2 2ϕ−. (3.5)

Since the tensile stress for pure shear is σxx = 4µγ [7], the formula for the effective viscosity taking into
account the energy expended in flowing around the particles has the form

µ+ = (σxxγV +WΣ)/(4γ2V ).

With allowance for (3.5), we can write

µ+ = µ
(

1 +
2.1
3

l2c
√
c

d2 ln (0.952/
√
c)

cos2 2ϕ−
)

(3.6)

[function ϕ−(τ) is determined in (2.2)]. All fibers have identical length, diameter, and orientation.
For m fractions, the relation for the effective viscosity is written as

µ+ = µ
(

1 +
2.1c
√
c

3 ln (0.952/
√
c)

m∑
i=1

ψi
l2i
d2
i

cos2 2ϕi
)
, (3.7)

where ϕi = arctan [tan ϕ0i exp (−2gτ)].
Regardless of the initial orientation of fibers, formulas (3.6) and (3.7) imply an asymptotic increase in

viscosity with time because ϕ → 0, ϕi → 0, cos2 2ϕ → 1, and cos2 2ϕi → 1 as τ → ∞. The static equilibrium is
stable. The maximum viscosity of the system is determined by the fiber concentration and the ratio (l/d)2.
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